
Overview
CNC machining is one of the most common types of conventional manufacturing technology generally associated with the machining of metals. CNC produces parts with high precision with applications across the industrial spectrum. Plastic materials are also CNC machined to produce high-quality parts. We all know CNC machining is a subtractive manufacturing process where the material is removed from the stock to gain the desired shape. Depending upon the design complexity, the operator would select if 3axis, 5axis or 6axis machine is suitable for the job. Added complexity also increased the need for high precision, complex set-up preparation and programming etc.
3D printing is the additive manufacturing technology where the part is created by adding material layer by layer. 3D printing could be used for making prototypes, low volume production, functional prototypes etc applications across diverse sets of industries. 3D printing is available for both plastics and metals.
Below we’ll discuss the factors which influence the selection of manufacturing technology.
Complexity
Higher design complexity will lead to longer setup times and extra cost. Instead, the designer should opt for 3D printing, if precision and strength are not key, which costs significantly lower and fast turnaround. For less complex parts, CNC is a good and cost-effective option than 3D printing.
Precision tolerances
If close tolerances are the key, then CNC is the best option. Only CNC machining will be able to produce parts matching precise tolerances. No other conventional manufacturing technology can achieve that.
Turnaround time
For faster turnaround, 3D printing is the best option for high complexity design. However, due to the size limitations of 3Dprinting, parts could be 3D printed in separated pieces and joined later. Additional time is needed to re-assemble the printed parts. On the other hand, larger parts could be CNC machined in a single piece saving extra rework time. However, CNC machining turnaround time could also be affected if additional set-ups are needed to hold complex design and post-processing for physical properties enhancement.